Licochalcone A induces autophagy through PI3K/Akt/mTOR inactivation and autophagy suppression enhances Licochalcone A-induced apoptosis of human cervical cancer cells

نویسندگان

  • Jen-Pi Tsai
  • Chien-Hsing Lee
  • Tsung-Ho Ying
  • Chu-Liang Lin
  • Chia-Liang Lin
  • Jung-Tsung Hsueh
  • Yi-Hsien Hsieh
چکیده

The use of dietary bioactive compounds in chemoprevention can potentially reverse, suppress, or even prevent cancer progression. However, the effects of licochalcone A (LicA) on apoptosis and autophagy in cervical cancer cells have not yet been clearly elucidated. In this study, LicA treatment was found to significantly induce the apoptotic and autophagic capacities of cervical cancer cells in vitro and in vivo. MTT assay results showed dose- and time-dependent cytotoxicity in four cervical cancer cell lines treated with LicA. We found that LicA induced mitochondria-dependent apoptosis in SiHa cells, with decreasing Bcl-2 expression. LicA also induced autophagy effects were examined by identifying accumulation of Atg5, Atg7, Atg12 and microtubule-associated protein 1 light chain 3 (LC3)-II. Treatment with autophagy-specific inhibitors (3-methyladenine and bafilomycin A1) enhanced LicA-induced apoptosis. In addition, we suggested the inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of mTOR pathway by LicA. Furthermore, the inhibition of PI3K/Akt by LY294002/si-Akt or of mTOR by rapamycin augmented LicA-induced apoptosis and autophagy. Finally, the in vivo mice bearing a SiHa xenograft, LicA dosed at 10 or 20 mg/kg significantly inhibited tumor growth. Our findings demonstrate the chemotherapeutic potential of LicA for treatment of human cervical cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway

Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...

متن کامل

Docosahexaenoic Acid Induces Cell Death in Human Non-Small Cell Lung Cancer Cells by Repressing mTOR via AMPK Activation and PI3K/Akt Inhibition

The anticancer properties and mechanism of action of omega-3 polyunsaturated fatty acids (ω3-PUFAs) have been demonstrated in several cancers; however, the mechanism in lung cancer remains unclear. Here, we show that docosahexaenoic acid (DHA), a ω3-PUFA, induced apoptosis and autophagy in non-small cell lung cancer (NSCLC) cells. DHA-induced cell death was accompanied by AMP-activated protein ...

متن کامل

Apatinib has anti-tumor effects and induces autophagy in colon cancer cells

Objective(s): Apatinib recently has been used to treat patients with gastric cancer, but the function of apatinib in colon cancer remains unclear. This study was conducted to investigate the impacts of apatinib on the biological function and its potential mechanism of colon cancer cells in vitro. Materials and Methods:The effect of apatinib in colon cancer cells were detected by assessing cell ...

متن کامل

Gefitinib induces lung cancer cell autophagy and apoptosis via blockade of the PI3K/AKT/mTOR pathway

Gefitinib is a selective inhibitor of the tyrosine kinase epidermal growth factor receptor, which inhibits tumor pathogenesis, metastasis and angiogenesis, as well as promoting apoptosis. Therefore, gefitinib presents an effective drug for the targeted therapy of lung cancer. However, the underlying mechanisms by which gefitinib induces lung cancer cell death remain unclear. To investigate the ...

متن کامل

Autophagy inhibition enhances RAD001-induced cytotoxicity in human bladder cancer cells

BACKGROUND Mammalian target of rapamycin (mTOR), involved in PI3K/AKT/mTOR pathway, is known to play a central role in regulating the growth of cancer cells. The PI3K/AKT/mTOR pathway enhances tumor survival and proliferation through suppressing autophagy, which sustains energy homeostasis by collecting and recycling cellular components under stress conditions. Conversely, inhibitors of the mTO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015